LithoVision 2011

Advanced Binary Film for 193nm Lithography Extension to Sub-32nm Node

Osamu Nozawa, Hiroaki Shishido, Masahiro Hashimoto, Yasushi Ohkubo, Hideaki Mitsui

Consideration of Mask Cost

- The mask cost increases by multiplication of mfg. cost x "frequency of re-making"
- It is critical for leading-edge masks to maximize their useful life, especially in the high volume production phase

HOYA

Can we develop a new film with significantly improved chemical & irradiation durability?

193nm Irradiation on MoSi Film

Before ArF irradiation

After ArF irradiation

193nm Irradiation on Ta Film

Before ArF irradiation

After ArF irradiation

Film Structure and Optical Property

Film structure

	AT01	AT02
Thickness of AR layer	9nm	5.5nm
Thickness of ABS layer	42nm	42.5nm
OD @193.4nm	3.06	3.02
Film side reflectivity @193nm	23.7 %	30.5 %
Backside reflectivity @193nm	37.2 %	38.8 %
Film side reflectivity @257nm	15.9 %	26.8 %

W.L. (nm)

W.L. (nm)

LithoVision

2011

A thin film is achieved with sufficient OD and optimized reflectivity

Initial Patterning Result

Cross sectional SEM image of 60nm L/S

✓ Vertical profile obtained

TOP view of 60nm L/S

LER: 3.5nm (3 sigma)

Resist: PRL009 100nm w/o HM

LithoVision | 2011

Initial Patterning Performance

Design CD (nm)

Category	Design Range	CD linearity	
		Range	3 sigma
L/S space	1000 - 60nm	6.0nm	4.9nm
IS space	1000 - 60nm	3.5nm	2.4nm
IL line	1000 - 64nm	8.8nm	8.1nm

No correction of EB writing was performed.

LithoVision

2011

AT01 can be patterned using 100nm resist

Film Stress

Flatness change between initial and after AT01 deposition

Plate	Sub TIR (nm)	AT01 TIR (nm)	Delta TIR (nm)
1	279	276	-3
2	293	281	-12
3	416	430	14

Low stress is observed on AT01

Image Placement Error

Reference: Proc. of SPIE Vol. 7823 78232W-9

Magnification change is near zero (-0.1 ~0 ppm)

HOYA

Chemical Cleaning Durability

Test condition per cleaning cycle

AT01 demonstrates excellent mask cleaning durability

Physical Cleaning Durability

Reference: Proc. of SPIE Vol. 7823 78232W-9

No pattern collapse at 62nm patterns

HOYA

Degradation Due to 193nm Irradiation

- ✓ Minimal CD shift due to 193nm irradiation
- ✓ No pattern degradation observed

Summary

- Ta was selected as the base material for its dry-etch capabilities and suitable thickness (to achieve satisfactory optical density), as well as its cleaning and irradiation durability
- Ta-based AT01 and AT02 are now fully developed
- AT01 successfully demonstrates high durability to both mask cleaning and 193nm irradiation
- AT01 and AT02 are expected to enhance mask life, resulting in significant long-term savings in total mask related cost in the lithography process

HOYA